If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-5x^2+60x-100=0
a = -5; b = 60; c = -100;
Δ = b2-4ac
Δ = 602-4·(-5)·(-100)
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-40}{2*-5}=\frac{-100}{-10} =+10 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+40}{2*-5}=\frac{-20}{-10} =+2 $
| 25=k÷5k=5 | | XxXxX=1,000 | | 3x+4+85+55=180 | | 16u+3u−u+3u−19u=8 | | 180=29+(x-5) | | 3x-87=53 | | 7x-3+9x-7=180 | | 11u=42+5u | | 60+80+20x=180 | | 122+90+90+x=180 | | 8-1/3x=24 | | O.23=2.73n-5 | | 106x+40=180 | | y/2=-1/30 | | 4c=3c−20 | | 18.63+y=33.63 | | p(5-2)=5/6-1/3 | | 4x=3x−20 | | -2(x+7)-7=x+14 | | 4.25m=-68 | | -6h+4-+h=1 | | 2(x+3)^2=98 | | 49y=8(y-7) | | -0.5x^2+1.5x-0.1=0 | | G(x)=7-x | | (3x+5)+(5x+13)=180 | | 5x+2(x-4=5x+x-10 | | 3(x-9)=-9+9x+1 | | 1/2m-3=20 | | 6x+11=2x+23 | | x/2+x/3=5/18 | | z2+16z+21=0 |